PHYSICAL REVIEW E VOLUME 59, NUMBER 3 MARCH 1999

Turbulence without pressure in d dimensions

S. A. Boldyrev
Princeton University, P.O. Box 451, Princeton, New Jersey 08543
(Received 28 May 1998; revised manuscript received 16 October) 1998

The randomly driven Navier-Stokes equation without pressuré-dimensional space is considered as a
model of strong turbulence in a compressible fluid. We derive a closed equation for the velocity-gradient
probability density function. We find the asymptotics of this function for the case of the gradient velocity field
(Burgers turbulengeand provide a numerical solution for the two-dimensional case. Application of these
results to the velocity-difference probability density function is discuds®t63-651X%99)06203-(

PACS numbgs): 47.27.Gs, 05.10.Gg, 52.35.Ra, 05.20.Jj

[. INTRODUCTION much larger that. be imposed and that the zero harmonic in
the k function be absent. These assumptions are usually used
The Burgers equation with a random external force isn numerical simulation§2,10].

considered to be the first exactly solvable model of one- In this paper we appeal to the results obtained for the 1D
dimensional(1D) turbulence and has been extensively stud-Burgers turbulence without pressure [ib—4,6,1Q. In par-
ied in recent year$1-11]. Though rather simplified, this ticular, we are interested in the velocity-gradient PDF
model can serve as a test model for some general ided@®(du'/9x) and the velocity-difference PDFP,(u(x;)
within the theory of strong turbulence. In 1995, methods—u(x,)), where the velocities are taken at the same time at
of quantum field theory were applied to this problem bysome fixed pointx; andx,. The physical picture presented
Polyakov [1] which enabled a qualitative explanation of in these papers allows us to consider a general phenomenon
velocity-difference probability-density functiongPDF'’s) such as intermittency on a rigorous basis; it is related to the
measured numerically by Chekhlov and Yakf@k In [3] it spontaneous breakdown of the Galilean invariance of the
was shown that the approagh] allows one to obtain quan- forced equation and to the algebraic decay of the PDF's. We
titatively correct results. Extensive numerical simulationswill not repeat these arguments here; instead, we will con-
published recently by Gotoh and Kraichngt0] show that centrate on the main ideas which allow us to consider the
the predictions of1,3] are quite accurate and coincide with multidimensional case.
numerical simulations to within about 5%. Yakhot has We will be interested in the case of small dissipation
shown in[12] that the ideas introduced fd] can have much and will consider distancelx; —x,|<L. The following or-
wider application and can also work for incompressible ve-der of the limits should be considered to get the steady

locity fluctuations. state: we first set—o0 and then consider the limit— 0.
We believe that the operator product expans{@¥PB),
introduced in[1] to take into account the viscous term, is an Il. VELOCITY-GRADIENT PDE

adequate language to treat compressible turbulence in higher

dimensions as well, where shock structures and associated To proceed quantitatively, consider the following charac-
local dissipation persist. In the present paper we find a closetgristic function (Z function) for the velocity gradientu,
equation for the velocity-gradient PDF for compressible tur-=gu'/gx*:

bulence in any number of dimensions. We investigate the

asymptotics of the PDF and present the numerical solution Z(ak|)E<exp(iak|u|k)>. (4)
for the 2D case.
The basic equation we will study is the following: As a result of Eq(1), this function satisfies the following
Fokker-Planck equation:
Ui+ (u-Vyu=v Au+f. (D)
. 92
The forcef is chosen to be Gaussian with zero mean and Z=ioy———2Z— 16—
i : dodoy) Jdo |k
white in time variance,
i Kiy! 47 ik ’ 1t+a
(DX ) =a(t—t") k" (x=x"), 2 —|aoiiot To'ik(a'ik+0'ki)
where thex function is concentrated at some large sdale 1- a
and can be expanded as follows: + T(rik(aik—aki) Z+D, (5)
K(y) = 100"~ k(Y8 + 2ay'y") (3)

where summation over repeated indices is assumed. For sim-
for y<L. We assume that the steady states for velocity graplicity, we setx;=1. To derive this equation we differenti-
dient and velocity difference exist; for this we can require,ated Eq.(4) with respect ta and expressed' using Eq.(1).
for example, that periodic boundary conditions on a scaldVe made use of the following identities:
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. | . m . 9 i d ik 52 1+a o J J
<|O-ikuku| equamnun)>=—laikm (6) UiP‘l‘m(UkLhP)"‘ QW—FTH %E_I—EF
P . l-a 9 [ 9 4 5 5 12
i i i ; — 7| =—aP.
(ioyu'uy eXIU('(Tannm)):<UI&—XreXFJ('Uannm)> 2 guilgul  auk
=—(uj expli cmpu™) This is the general equation for the PDF. The force in this
equation can have different symmetry properties, which cor-
—is J 7 @) respond to different values of the parametdn Eq. (3). No
'kﬁa'ik ' restrictions have so far been imposed on the velocity field
either.
and Equation(12) can be simplified for thegradient force f
=V . This choice corresponds te=1 and allows us to
) i ) m 1 im look for a solution in the factorized form
<|Uikfkexq|‘7mnun)>: Eo'ika'mnKkn(o)Z- (8)
. : . : P=[11 s(u,—u|P), 13
The D term in Eq.(5) describes the contribution of the dis- L[k (U= up) |P(W) (13

sipation and in steady state is given by

wheret denotes the symmetric part of the matuiy . Physi-
D= lim (vi s Aufexp(i oyup)). (9 cally, this means that we have restricted our consideration to

v=0 gradientfluctuations of the velocity fieldy=Vh. We refer
to this case as multidimensional Burgers turbulence. It has

Without this term the steady state in EG) does not peen considered by completely different methodg5iv].
exist. This term cannot be closed without further assumpThe spirit of our method is most close to the consideration of

tions. In[1], assumptions about scaling invariance, Galilearyg]. Equation(12) with ansatz(13) can be cast into the fol-
invariance, and the operator product expansion were applie@wing form:

to close the analogous term for the velodiifferencePDF.
It is not obviousa priori that these methods can be applied to o
our problem, since the limitgy—0 and »—0 may not be 3TJ}P+ELU}<
interchangeable.

Nevertheless, it was observed in the numerical simula-
tions in [10] that the velocity-difference and the velocity- ) ) -
gradient PDF’s coincide for the Galilean invariant region!n what follows we will consider only the functio® and
AU<Ums[Uyme= (xoL) 3] in the one-dimensional case. This Will omit the overtilde sign. .
suggests that the velocity-difference PDF is contributed to by Eduations(12) and(14) help to reveal the physical sense
smoothparts of the velocity field in the Galilean invariant Oif thea anomaly. Integrating these equations with respect to
region, and therefore the limitg—0 and v—0 are inter- Uk, One gets
changeable. ,

Another important result of10] is that the 3 anomaly (uj)=—a, (19
introduced in[1] is absent for regular forcing. We assume
that this is true for the multidimensional case as well. Undewhich means that this anomaly describes the average mea-
this assumption théd term in the multidimensional case sure loss due to compressibility and presence of shocks. It
should be expanded as can also be interpreted as the mean rate of density accumu-

lation on shocks in the Lagrangian picture:

J 32 FZ -
— + i k+2 i i P=—aP.
au| aui uyg - duy duy

(14

D=aZ. (10 '
p(y,t)+uip(y,t) +ap(y,t)=0, (16)
This is the only assumption we use in what follows. We
refer the reader to Ref§1—3,10 for more details and dis- \where y is the Lagrangian coordinatm: represents the
cussions on the underlying ideas. We will see that this assmooth part of the velocity field, ara= (Ul ghocks We note
sumption is self-consistent; the anomalgan be found from 5, interesting analogy with a mean-field approximatioa:
the conditions of positivity, finiteness, and normalizability of i5 introduced as the mean field in the dynamical equations
the PDF. These conditions can be easily imposed on the PDfq then is found self-consistently from Ed4). The inter-
in u space. We therefore transform E§) to u space, using pretation(16) is important, since it allows one to introduce
the anomaly on the level of the stochastic Langevin equation.
_ —iouuk In general, the PDF should depend only on invariants with
p(vU)_f do Z(o)e ionur, 1D respe%:t to space rotations. For tilfelimensignal space, there
are exactlyd such invariants, which can be chosen as the
wheredo=1I1; , doy is the measure id?-dimensional space eigenvalues of the matrigi; . Let us denote them as
of the elements of the matrix;, . In the steady state, the \;,\,,...,Aq. Equation(14) can be rewritten for the func-
equation takes the form tion P depending on only these variables:



PRE 59 TURBULENCE WITHOUT PRESSURE INI DIMENSIONS 2973

d d P 2 d g 2 AR
3Nt NE——|P+ —| P+2 (-) P 008 p
kzl K k(9)\k kzl a)\k) kgl &)\k 0.06 [ (7\’1 7\12)
1 J J 0.04 i
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0
To derive this equation we used the following expression for %
the matrix Laplacian, known in the theory of matrix models
(13,14 -6
2 1 1 [ Ao
vi= + = — . 18 4 66
u Z 2 2% )\i_)\k(m\i 5)\k) 18 M

. o . FIG. 1. Velocity-gradient robability-densit: function
Equation(17) has an infinite number of solutions. The P\ i \y). g P y y

physically reasonable solution should satisfy conditions of
positivity, finiteness, and normalizability, exactly in the same
manner as the ground state is determined in quantum m
chanics. The solution should also be symmetrical with res
spect to the arguments;,...,\q. These conditions should
determine the unknown paramesgerThis parameter depends
only on the symmetry properties of the external force and on
the space dimensionality.

As in the one-dimensional case, the asymptotics of the
solutions can be found by bglancmg different terms in EqwhereA()\)=Hi<j()\i—)\j) is the Van der Monde determi-
(17). If we balance the advective and force terms, we will get . ;

o i RO nant; for details, segl3-15.
the PDF tail in the region where the dissipative effects are
negligible. In the one-dimensional case this corresponds to
the right tail of the PDF. This tail decays hyperexponentially ll. NUMERICAL SOLUTION FOR THE
fast. In the multidimensional case the analogous asymptotic TWO-DIMENSIONAL CASE
should have the forlRe<cexg A4, . . . ,Ag)]. The functionS
should be symmetric with respect to its argumentsd
N1i,.--,Ag. The asymptotic can be simply found for large s

d(d+1)/2]-dimensional space of elements of the symmet-
ic matrixT;, . In \ space, this normalization is performed as
ollows:

d
f |A<x>|P<x)kljl dne=1, (22)

In this section we solve Eq17) numerically in the two-
imensional case. The purpose of these calculations is to
how that Eq.5) with the anomaly tern{10) does have a

positive\'s in the direction close ta;=--=A\g: steady state, at least for the gradient velocity field.
— A3 We have used the relaxation method and started with
Pxex;{m , (19 some arbitrary busymmetricalinitial distribution. The nu-

merical value for the anomaly turned out to be=1.30
+0.02. The PDF has hyperexponential and powerlike tails
and is presented in Fig. 1. The PDF is normalized according
to Eqg.(22). Plotted on the horizontal axes axg andX,.
Figure 2 shows the same PDF for the diagonal direction
--=\4. The left tail decays as AF; the right tail

where A=Tr(T; ) =N1+---+\q. The same asymptotic for
large N can also be obtained by the instanton methiag§]
applied directly to quantum mechanicky).

The tail, corresponding to large negatix&s (the “left” o
tail), decays rather slowly. The explanation is simple.*1™ "
Burgers shocks always have negative velocity jumps, and

therefore large positive velocity gradients are less probable 0.08

than large negative ones. The left tail is determined by large 0.07 |

negative gradients, and to obtain it we should neglect the

force term in Eq(17). We find 0.06 r
0.05 |

G(lik)
F g (20 0.04 |

whereG is some function andly,=(\;— X\ )/\j\ ared—1 003 1

independent invariants of the characteristic equations for Eq. 0.02 |

(17). The finite solution, which is nonvanishing far=---

=\q4, has the form 001
0.00

P —————=Det (Ty). 21 642 o 2 46
TVEDWE (Ti) (21 s
The function obtained from Eq17) should be normal- FIG. 2. Velocity-gradient PDRP(A) for the diagonal direction

ized with respect to the flat measure in thex,=---=)\q4.
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asymptotic isPxexp(—A%48), in agreement with Eq$19) not be a universal fact. It was conjectured[B] that dif-

and(21). HereP(A) is plotted vsyAZ+\2=A/V2. ferent dissipative regularizationge.g., hyperdissipation
(—1) P3?P/9x?P] can lead to different steady states. This
IV. CONCLUDING REMARKS assumption is natural for the language of the OPE: differ-

) o ~_ entdissipative operators should have different expansion co-
The crucial assumption in our treatment of the dissipativesfficientsa and b (we use the notation of1]). Moreover,

anomaly is the assumption that only smooth parts of thgome analog of thegg anomaly can also be present in Eq.
velocity field contribute to the anomaly term. We can exploit (1) since it describes a general velocity field, without “gra-
this assumption further to generalize our results to thejiont restriction (13).
\{elocny@fferencePDF. Aftgr the velocny-grad'lenz func- These questions are under consideration. The results will
tion (4) is found, the velocity-differenc& function can be be reported elsewhere
constructed as follows: '

Z,(& Y =Z(Gy ) =(exp(i Lykup); (23)

i.e., we simply changed;— ¢y« in Eq. (4). The Fourier ,
transform with respect t@ will then give the velocity- | @m indebted to A. Polyakov and V. Yakhot for many
difference PDF. important discussions and comments. | would also like to
Analogously, one can obtain a PDF f@ru. For this pur- thank T. Gotoh, V. Gurarie, and R. Kraichnan for useful
pose one should set, — &, {. Such a PDF was investigated conversations, D. Uzdensky for helpful discussions on both

numerically in[16], though the Reynolds number was not the physics and the numerics of the problem, and T. Munsat
large enough to obtain the inertial range. for valuable remarks on the style of the paper. This work

Finally, we would like to note that the absence of thewas supported by the U.S. DOE Contract No. DE-AC02-76-
B anomaly, which we assumed in our consideration, can€CHO-3073.
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