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Turbulence without pressure in d dimensions

S. A. Boldyrev
Princeton University, P.O. Box 451, Princeton, New Jersey 08543
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The randomly driven Navier-Stokes equation without pressure ind-dimensional space is considered as a
model of strong turbulence in a compressible fluid. We derive a closed equation for the velocity-gradient
probability density function. We find the asymptotics of this function for the case of the gradient velocity field
~Burgers turbulence! and provide a numerical solution for the two-dimensional case. Application of these
results to the velocity-difference probability density function is discussed.@S1063-651X~99!06203-0#

PACS number~s!: 47.27.Gs, 05.10.Gg, 52.35.Ra, 05.20.Jj
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I. INTRODUCTION

The Burgers equation with a random external force
considered to be the first exactly solvable model of o
dimensional~1D! turbulence and has been extensively stu
ied in recent years@1–11#. Though rather simplified, this
model can serve as a test model for some general id
within the theory of strong turbulence. In 1995, metho
of quantum field theory were applied to this problem
Polyakov @1# which enabled a qualitative explanation
velocity-difference probability-density functions~PDF’s!
measured numerically by Chekhlov and Yakhot@2#. In @3# it
was shown that the approach@1# allows one to obtain quan
titatively correct results. Extensive numerical simulatio
published recently by Gotoh and Kraichnan@10# show that
the predictions of@1,3# are quite accurate and coincide wi
numerical simulations to within about 5%. Yakhot h
shown in@12# that the ideas introduced in@1# can have much
wider application and can also work for incompressible
locity fluctuations.

We believe that the operator product expansion~OPE!,
introduced in@1# to take into account the viscous term, is
adequate language to treat compressible turbulence in hi
dimensions as well, where shock structures and assoc
local dissipation persist. In the present paper we find a clo
equation for the velocity-gradient PDF for compressible t
bulence in any number of dimensions. We investigate
asymptotics of the PDF and present the numerical solu
for the 2D case.

The basic equation we will study is the following:

ut1~u•“ !u5n Du1f. ~1!

The forcef is chosen to be Gaussian with zero mean a
white in time variance,

^ f i~x,t ! f k~x8,t8!&5d~ t2t8!k ik~x2x8!, ~2!

where thek function is concentrated at some large scaleL
and can be expanded as follows:

k ik~y!5k0d ik2k1~y2d ik12ayiyk! ~3!

for y!L. We assume that the steady states for velocity g
dient and velocity difference exist; for this we can requi
for example, that periodic boundary conditions on a sc
PRE 591063-651X/99/59~3!/2971~4!/$15.00
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much larger thanL be imposed and that the zero harmonic
thek function be absent. These assumptions are usually u
in numerical simulations@2,10#.

In this paper we appeal to the results obtained for the
Burgers turbulence without pressure in@1–4,6,10#. In par-
ticular, we are interested in the velocity-gradient PD
P(]ui /]xk) and the velocity-difference PDFPv„u(x1)
2u(x2)…, where the velocities are taken at the same time
some fixed pointsx1 andx2 . The physical picture presente
in these papers allows us to consider a general phenom
such as intermittency on a rigorous basis; it is related to
spontaneous breakdown of the Galilean invariance of
forced equation and to the algebraic decay of the PDF’s.
will not repeat these arguments here; instead, we will c
centrate on the main ideas which allow us to consider
multidimensional case.

We will be interested in the case of small dissipationn
and will consider distancesux12x2u!L. The following or-
der of the limits should be considered to get the stea
state: we first sett→` and then consider the limitn→0.

II. VELOCITY-GRADIENT PDF

To proceed quantitatively, consider the following chara
teristic function ~Z function! for the velocity gradientuk

i

[]ui /]xk:

Z~skl![^exp~ isklul
k!&. ~4!

As a result of Eq.~1!, this function satisfies the following
Fokker-Planck equation:

Ż5 is ik

]2

]s lk]s i l
Z2 id ik

]

]s ik
Z

2Fas i i skk1
11a

2
s ik~s ik1ski!

1
12a

2
s ik~s ik2ski!GZ1D, ~5!

where summation over repeated indices is assumed. For
plicity, we setk151. To derive this equation we differenti
ated Eq.~4! with respect tot and expressedu̇k

i using Eq.~1!.
We made use of the following identities:
2971 ©1999 The American Physical Society
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^ is ikuk
l ul

i exp~ ismnun
m!&52 is ik

]2

]s lk ]s i l
Z, ~6!

^ is ikululk
i exp~ ismnun

m!&5 K ul
]

]xl exp~ ismnun
m!L

52^ul
l exp~ ismnun

m!&

5 id ik

]

]s ik
Z, ~7!

and

^ is ik f k
i exp~ ismnun

m!&5
1

2
s iksmnkkn

im~0!Z. ~8!

The D term in Eq.~5! describes the contribution of the dis
sipation and in steady state is given by

D5 lim
n→0

^n is rs Dus
r exp~ isklul

k!&. ~9!

Without this term the steady state in Eq.~5! does not
exist. This term cannot be closed without further assum
tions. In @1#, assumptions about scaling invariance, Galile
invariance, and the operator product expansion were app
to close the analogous term for the velocity-differencePDF.
It is not obviousa priori that these methods can be applied
our problem, since the limitsy→0 and n→0 may not be
interchangeable.

Nevertheless, it was observed in the numerical simu
tions in @10# that the velocity-difference and the velocity
gradient PDF’s coincide for the Galilean invariant regi
Du!urms @urms5(k0L)1/3# in the one-dimensional case. Th
suggests that the velocity-difference PDF is contributed to
smoothparts of the velocity field in the Galilean invarian
region, and therefore the limitsy→0 and n→0 are inter-
changeable.

Another important result of@10# is that theb anomaly
introduced in@1# is absent for regular forcing. We assum
that this is true for the multidimensional case as well. Un
this assumption theD term in the multidimensional cas
should be expanded as

D5aZ. ~10!

This is the only assumption we use in what follows. W
refer the reader to Refs.@1–3,10# for more details and dis
cussions on the underlying ideas. We will see that this
sumption is self-consistent; the anomalya can be found from
the conditions of positivity, finiteness, and normalizability
the PDF. These conditions can be easily imposed on the
in u space. We therefore transform Eq.~5! to u space, using

P~“u!5E ds Z~s!e2 isklul
k
, ~11!

whereds5P i ,k ds ik is the measure ind2-dimensional space
of the elements of the matrixs ik . In the steady state, th
equation takes the form
-
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]
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i ~uk

i ul
kP!1Fa

]2

]ui
i ]uk

k 1
11a

2

]

]uk
i S ]

]uk
i 1

]

]ui
kD

1
12a

2

]

]uk
i S ]

]uk
i 2

]

]ui
kD GP52aP. ~12!

This is the general equation for the PDF. The force in t
equation can have different symmetry properties, which c
respond to different values of the parametera in Eq. ~3!. No
restrictions have so far been imposed on the velocity fi
either.

Equation~12! can be simplified for thegradient force f
5“f. This choice corresponds toa51 and allows us to
look for a solution in the factorized form

P5F)
i ,k

d~uk
i 2ui

k!G P̃~ ũ!, ~13!

whereũ denotes the symmetric part of the matrixuik . Physi-
cally, this means that we have restricted our consideratio
gradientfluctuations of the velocity field,u5“h. We refer
to this case as multidimensional Burgers turbulence. It
been considered by completely different methods in@5,7#.
The spirit of our method is most close to the consideration
@8#. Equation~12! with ansatz~13! can be cast into the fol-
lowing form:

3ũi
i P̃1ũk

i ũl
k ]

]ul
i P̃1F ]2

]ui
i ]uk

k 12
]2

]uk
i ]uk

i G P̃52aP̃.

~14!

In what follows we will consider only the functionP̃ and
will omit the overtilde sign.

Equations~12! and ~14! help to reveal the physical sens
of thea anomaly. Integrating these equations with respec
uk

i , one gets

^ui
i&52a, ~15!

which means that this anomaly describes the average m
sure loss due to compressibility and presence of shock
can also be interpreted as the mean rate of density accu
lation on shocks in the Lagrangian picture:

ṙ~y,t !1ui
ir~y,t !1ar~y,t !50, ~16!

where y is the Lagrangian coordinate,ui
i represents the

smooth part of the velocity field, anda5^ui
i&shocks. We note

an interesting analogy with a mean-field approximation:a
is introduced as the mean field in the dynamical equati
and then is found self-consistently from Eq.~14!. The inter-
pretation~16! is important, since it allows one to introduc
the anomaly on the level of the stochastic Langevin equat

In general, the PDF should depend only on invariants w
respect to space rotations. For thed-dimensional space, ther
are exactlyd such invariants, which can be chosen as
eigenvalues of the matrixũik . Let us denote them a
l1 ,l2 ,...,ld . Equation~14! can be rewritten for the func
tion P depending on only these variables:
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(
k51

d S 3lk1lk
2 ]

]lk
D P1S (

k51

d
]

]lk
D 2

P12(
k51

d S ]

]lk
D 2

P

1(
i ,k

1

l i2lk
S ]

]l i
2

]

]lk
D P52aP. ~17!

To derive this equation we used the following expression
the matrix Laplacian, known in the theory of matrix mode
@13,14#:

¹ ũ
25(

i

]2

]l i
2 1

1

2 (
i ,k

1

l i2lk
S ]

]l i
2

]

]lk
D . ~18!

Equation ~17! has an infinite number of solutions. Th
physically reasonable solution should satisfy conditions
positivity, finiteness, and normalizability, exactly in the sam
manner as the ground state is determined in quantum
chanics. The solution should also be symmetrical with
spect to the argumentsl1 ,...,ld . These conditions should
determine the unknown parametera. This parameter depend
only on the symmetry properties of the external force and
the space dimensionality.

As in the one-dimensional case, the asymptotics of
solutions can be found by balancing different terms in E
~17!. If we balance the advective and force terms, we will g
the PDF tail in the region where the dissipative effects
negligible. In the one-dimensional case this correspond
the right tail of the PDF. This tail decays hyperexponentia
fast. In the multidimensional case the analogous asympt
should have the formP}exp@S(l1, . . . ,ld)#. The functionS
should be symmetric with respect to its argume
l1 ,...,ld . The asymptotic can be simply found for larg
positivel’s in the direction close tol15¯5ld :

P}expF 2L3

3d2~d12!G , ~19!

whereL[Tr(ũik)5l11¯1ld . The same asymptotic fo
largel can also be obtained by the instanton methods@7,8#
applied directly to quantum mechanics~17!.

The tail, corresponding to large negativel’s ~the ‘‘left’’
tail!, decays rather slowly. The explanation is simp
Burgers shocks always have negative velocity jumps,
therefore large positive velocity gradients are less proba
than large negative ones. The left tail is determined by la
negative gradients, and to obtain it we should neglect
force term in Eq.~17!. We find

P}
G~ I ik!

~l1¯ld!3 , ~20!

whereG is some function andI ik5(l i2lk)/l ilk ared21
independent invariants of the characteristic equations for
~17!. The finite solution, which is nonvanishing forl15¯

5ld , has the form

P}
1

~l1¯ld!3 [Det23~ ũik!. ~21!

The function obtained from Eq.~17! should be normal-
ized with respect to the flat measure in t
r
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@d(d11)/2#-dimensional space of elements of the symm
ric matrix ũik . In l space, this normalization is performed
follows:

E uD~l!uP~l!)
k51

d

dlk51, ~22!

whereD(l)5P i , j (l i2l j ) is the Van der Monde determi
nant; for details, see@13–15#.

III. NUMERICAL SOLUTION FOR THE
TWO-DIMENSIONAL CASE

In this section we solve Eq.~17! numerically in the two-
dimensional case. The purpose of these calculations i
show that Eq.~5! with the anomaly term~10! does have a
steady state, at least for the gradient velocity field.

We have used the relaxation method and started w
some arbitrary butsymmetricalinitial distribution. The nu-
merical value for the anomaly turned out to bea51.30
60.02. The PDF has hyperexponential and powerlike t
and is presented in Fig. 1. The PDF is normalized accord
to Eq. ~22!. Plotted on the horizontal axes arel1 andl2 .

Figure 2 shows the same PDF for the diagonal direct
l15¯5ld . The left tail decays as 1/L6; the right tail

FIG. 1. Velocity-gradient probability-density functio
P(l1 ,l2).

FIG. 2. Velocity-gradient PDFP(L) for the diagonal direction
l15¯5ld .
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asymptotic isP}exp(2L3/48), in agreement with Eqs.~19!
and ~21!. HereP(L) is plotted vsAl1

21l2
25L/&.

IV. CONCLUDING REMARKS

The crucial assumption in our treatment of the dissipat
anomaly is the assumption that only smooth parts of
velocity field contribute to the anomaly term. We can expl
this assumption further to generalize our results to
velocity-differencePDF. After the velocity-gradientZ func-
tion ~4! is found, the velocity-differenceZ function can be
constructed as follows:

Zv~z i ,yk!5Z~z i y
k![^exp~ i z i y

kuk
i !&; ~23!

i.e., we simply changeds ik→z i yk in Eq. ~4!. The Fourier
transform with respect toz will then give the velocity-
difference PDF.

Analogously, one can obtain a PDF for“•u. For this pur-
pose one should sets ik→d ikz. Such a PDF was investigate
numerically in @16#, though the Reynolds number was n
large enough to obtain the inertial range.

Finally, we would like to note that the absence of t
b anomaly, which we assumed in our consideration, c
e
e
t
e

-

not be a universal fact. It was conjectured in@3# that dif-
ferent dissipative regularizations@e.g., hyperdissipation
(21) p]2p/]x2p# can lead to different steady states. Th
assumption is natural for the language of the OPE: diff
ent dissipative operators should have different expansion
efficients a and b ~we use the notation of@1#!. Moreover,
some analog of theb anomaly can also be present in E
~12!, since it describes a general velocity field, without ‘‘gr
dient’’ restriction ~13!.

These questions are under consideration. The results
be reported elsewhere.
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